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cf, + czaz + 2mzz = fa (2, t, .a~, zWzJ for t = Tl (4 

where A, B and C are positive constants and the functions fl, fz, fe and f4 are ana- 

lytic in all variables. By the theorem proved in [5] the problem (4.9) has a unique ana- 

lytic solution and the series (1.5) as well as the series for the second order derivatives 
obtained from (1.5) converge in some neighborhood of the point (0, 0). 
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Proof is given of certain statements about forces acting on uniformly heated bo- 
dies in a gas. It is shown that bodies heated to different temperatures repel each 
other, while a heated and a cooled body are mutually attracted, A new form of 
thermophoresis is indicated, These phenomena are the result of Barnett thermal 
stresses. The existence of similar effects induced by concentration stresses in gas 

mixtures is established. 

1, Fundamental relation$htpc, When defining slow (characteristic Reynolds 

number R ==; 1 and Mach number J%! < 1) flows of gas in a substantially nonuni- 
form temperature field, i, e. whose characteristic relative temperature differentials 

z, ==: 1, it is necessary to take into consideration Barnett thermal stresses 
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since these are of the fundamental order of magnitude [l -41. Formula (1.1) and the 
equations of conservation for such flows are defined below in the following dimension- 

less variables : temperature, thermal conductivity and viscosity coefficients, density, 
Cartesian coordinates, thermal stresses, velocity, pressure, the force acting on the body, 
and the moment of forces, respectively, by 

T*T, rl+rl(T), pep CT), p*p (1.2) 

L (Xl, x2, 53) f L (x, y, z), 11..2 (T) CL, y 
p,L2 pij ’ p L . 

-1’2p, 

where L is a characteristic dimension and /z / m is the gas constant. Unless otherwise 
stated, the characteristic values are assumed to be equal to the corresponding parame- 
ters of gas in the unperturbed stream (T, = T, , etc. ). The ratio of specific heats and 

the Prandtl number for T = 1 are denoted, respectively, by 3c and P . 

Eliminating p as in [a], by using the equation of state p = 1 / T, we reduce the 
equations of continuity, energy and momentum for stationary conditions and in the ab- 
sence of external forces to the form 

Vv=v.VInT 

Ev.Vln T = AL?, E = 5/&c- 1) P]x 

T-‘(vqv + on: = 

n”‘+ YT(VT)*VT+ E(a,‘-ua,iq)(v.VlnT)VT 

XT = ‘12 ‘%‘q + l/e ‘$7 YT = l/2 (al”7 > a2’ > u,‘q’ + 2a,q’ i 11) 

If P = 11 = TJ, then [2] 

a, = olTs, a2 = - 03T2S-1, ml > 0, cog >0 

x, = l/2 (qs - co3 / 3) T2s-1, Y, = -42 (CL+ + 02) T2s-2 

(4.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The structure of Barnett coefficients for this particular case is known [5]. In the first 

approximation by Sonin’s polynomials o1 = 3 and os = 0, and this is exact in the case 
of Maxwellian molecules (S = 1). This approximation yields very good results for P and 
‘1 of a simple gas, it is, however, inadequate for Barnett coefficients ; in the case of mo- 
lecules (elastic spheres) (s = ‘ia) it is necessary to resort to four approximations by Son- 
in’s polynomials, which yield or = 2.418 and (0s == 0.990. For z, < 1 the rate of 

thermal-stress convection is v - 17Tr*3 [Z]. For elastic spheres the ratio of 1-r values 

calculated in the first and fourth approximations by Sonin’s polynomials is 
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E.+l) I YTc4) = 3/:: 1 (1/s.2.418 + 0.990) = 0.68 

Hence the first approximation by Sonin’s polynomials and the equivalent results obtained 
by Grad’s method may lead to considerable errors, particularly in the case of gas mix- 
tures. 

Boundary conditions for system (1.3) - (1.7) differ from those usually applied for 
solving the NavierStokes equations only by the condition for the tangent velocity com- 

ponent along the body U+ = PpdT, / dxr, where for given gas and material of the 
wall the coefficient /?I = const and z?, is called the thermal creep rate. 

The case of the “uniformly heated” body in which the temperature at its surface is 

everywhere the same (T,, = const) is primarily considered here. In this case at the 

surface of the body v- _= (I, A\- = 0, T = T, , and 

AC2 = 0 

and the total stress tensor along s, i. e. the tensor of local stresses, is 

(1.9) 

where pW = lo (T,) etc. 

The integrals over S with respect to Pii yield F and 81. We denote the related 
integrals of local thermal stresses, i. e. of the last two terms in formula (1.10) by Ft“) 
and fiIcT) , the outward normal by II , the radius vector by r , and the unit vector along 
an arbitrarily chosen z-axis by e,. . 

Lemma 1. When T,, = corlst , we have 

p’.T! = _ 2 o R :j sW 5 (V T)2 (II. e,,.) dS (1.11) 

M’T’ = - { azW s (D T)” [y (11. c,) - z (u. ey)] dS x (1.12) 

In fact 
F(T) = _ 

X pi) (n . q.) dS = f a2w \ (VT)’ (II * e,) LS - (1.13) 
6 

Taking into account (1.9) and assuming that the necessary conditions of continuity and 

integrability of functions are satisfied, we obtain 

I, = 
,’ 8”Q 

I 
-(n.e,)dS = \gdydz + g,drcdz _I- z dxdy = 
i3Xkib 

(1.14) 

(1.15) 
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We similarly prove that all integrals in (1.15), with the exception of the first one, i. e. 

I2 = 1 (VT)2 (n-e,) dS (1.16) 

are, as in (1.14), zero. Substituting (1.14) and (1.16) into (1.13), we obtain the sought 
formula (1.11). Now 

(1.17) 

By carrying out operations similar to those used in the derivation of (1.11) and integrat- 
ing by parts, we obtain (1.12). Note that for Maxwellian molecules a3 = 0, hence in 
that case local thermal stresses do not affect the force and the moment. We emphasize 

that Lemma 1 is valid for any finite system of bodies. 
In what follows the term single body will be understood to denote a body of finite 

dimensions in an infinite volume of gas free of any other bodies. 
Lemma 2. Let in the gas surrounding the single body 

8Pij / dXj = 0; Pij = 0 (r-‘), r--f 00 (1.18) 
Then F == 0. 

In fact, by the Gauss-Ostrogradskii theorem we have 

where Z denotes a spherical surface of radius R. Here, by the first condition (1.18) 

the first integral is zero. while the second by virtue of the second condition (1.18) tends 
to zero when R --t co . Since the 5 -axis is arbitrary, F = 0. 

2. Flrrt approximstlon by z*. Let T* < 1. If there is no stream flowing 
around the body and T, = con&, a thermal-stress convection induced by thermal 
stresses [l - 31 at v - z*:{, and pressure change p - 2,’ will generally develop. 
This means that in the first‘approximation by r* the gas is at rest and p = 0. If the 
motion is induced by other factors, the characteristic velocity is different. Namely, 
U-T *. If Z’cu - z, , or the temperature drop at the body is of the order of ‘t* (weak 
thermal creep), the Barnett terms in the equation of momentum are negligibly small. 
However in all these cases thermal stresses are quantities 
magnitude, hence 

p!?‘) : u,q _a?T - t 
11 iA $.zj * 

and 
AT = 0 

of the fundamental order of 

(2.1) 

(2.2) 

which means that they could contribute to F and RI. 
However in the first approximation by z,. F(T) and M(T) are zero. This follows from 

Lemma 1, if one takes into account that in the considered approximation condition (1.9) 
at surface S is replaced throughout the gas by Eq. (2.2). 

Thus for T, = con& the force and the moment of forces acting on a separate body 
of finite dimensions, taken out of a finite system of such bodies, are zero in the first 
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approximation by z, . This statement may be called the generalized Maxwell theorem. 
The problem of thermal-stress effects in a gas at rest was first considered by Maxwell. 

A statement analogous to the one proved here about the force is contained in [Cl. Epstein 
has proved it for a single body ( * ). This constraint was necessary for using the Gauss- 
Ostrogradskii theorem and passing to the examination of the asymptotics of pijT for 
r - 00. Here the proof is simplified, extended to the moment of forces, and to the case 
of a system of bodies, 

3. Electro8tatlc analogy, When T, = const , then in the first approxima- 
tion by Z, the gas is at rest, but 

p = --XT (VT)‘, z=3’--1 (3.1) 

with relative error z*. For r we then have 

no = 0, ~ ISi =: pi, ~ (I. ---, ~) ---, 0 (3.2) 

where Si is the surface of the i -th body of a finite system of bodies. 

Formula (3.1) follows from relationships (1.5) and (1.6). Allowing for (3.1) and (1.11) 
we obtain 

F,x =: k~ ’ (C.C)~ (n .e,) dS, 
s 

kT : ,yTw - +- a,, (3.3) 
s 

and a similar expression for M,. For in = q = T” we have kT = 11~ (SO 1 +O J 2 0. 
It is important to note that relationships (3.2) conform to those for the potential ot an 

electrostatic field outside of conductors in vacuum, and that (3.3) is proportional to the 

ponderomotive force acting on a conductor in an electrostatic field (see, e. g. [8]). 
The electrostatic analogy has thus been established: the forces of interaction between 

uniformly heated (cooled) bodies with ri # 0 can be calculated by conventional me- 
thods of electrostatics. 

The force acting between two spherical particles at relative temperatures r, and r, 

is asymptotically (R --f oo) equal 

where rr and r, are the radii of particles and fi is the distance between these. If 

sign it = sign r2, the particles repel each other, and if sign z,- -sign r2, they are 

attracted to each other (Coulomb’s law in electrostatics). In particular, a body whose 

temperature differs from that of a plane screen will be deposited on the screen. 

In the r*2 approximation no force is acting on the body. This follows from the analogy, 
as well as from Lemma 2 and relationships (3.2). 

4. The thermophoretic force. Let us consider one of the problems in the 
approximation described in Sect. 3. Let a uniformly heated spherical particle of radius 

L = 1 be located in a boundless volume of gas. We set T, = T, , define z by for- 
mula T m= 1 -+ t , and assume that along the polar axis the temperature gradient at 
the body r (r = 1) =~ 0 is specified by 

*) The authors were unaware of n] and in the paper [l] had given a proof which repea- 
ted that of Epstein’s_ They have, however, proved a similar statement with respect to the 
moment of forces, which was not given in [‘i 1. 
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r(r-+ oo)+Brcose +D (4.1) 

where B and D-z,(<l. The solution of equation At = 0 is 

z = B (r - r”) case + D (1 - r-l) (4.2) 

which means that at the body VZ == 3B cost) + D and that (3.3) assumes the form 

F, = k&3nBD (4.3) 

The force acting on the body is independent of the size of the latter and is nonzero if 

D # 0 (if T, =p 1 for B = 0,. When the body is heated (D < 0), the force acts 

in the opposite direction to the specified VT, if it is cooled (D > 0) , its direction 
is the same as VT. 

tit CF =- F, (p* I Lp,a,Y, where a, is the speed of sound. It follows then from 

(4.3) that 
CF - Kn2’G,2 (4.4) 

The phenomenon considered here is a new variant of thermophoresis induced in the 
gas by thermal stresses for a small but fixed difference between the local temperature 

of gas and body for the Knudsen number Kn + 0. 
Classical thermophoresis occurs when the thermal conductivity coefficient qbof the 

particle is finite. Then in the presence of ~2’ Irn the temperature T, # const rhe 

thermal creep takes place along the wall, which induces the motion of’gas. The related 

value 
CF - -Kn2By / yb - -Kn2t,q / qb (4.5) 

For metal particles qb > 11 and, if the particle is superheated or supercooled, (4.5) 

can be even smaller than (4.4). 
Another limit case (Kn small but fixed, r, --f 0, and T, = const) was considered 

in [9]. where thermal stresses were neglected in equations, but were taken into account 
in boundary conditions for second order creep together with the second order creep in- 

duced by the temperature jump. The second effect is sometimes taken into account in 
the analysis, although it was shown in [9] that the first effect is the determining one, 
since it defines the sign of the force 

CF - Kn3B - Kn3r, 

The same result was obtained in [lo] for a perfectly heat-conducting body. 

(4.6) 

It follows from formulas (4.4) - (4.6) that, depending on external conditions and pro- 
perties of particles, various forms of thermophoresis can predominate. In sets of heated 

(cooled) particles the effect described in Sect. 3 may be the predominant one. 

5. Conditions for qufescence around a lightly deformed sphere. 
It was shown in Sect. 3 that in the ~~2 a pproximation the force acting on a single body 
is zero. For arbitrary T* the problem of this force remains unresolved. Attempts at es- 
tablishing whether such force generally exists proved to be unsuccessful. It seemed rea- 
sonable to consider simple limit cases. The first of these (Q e 1) was considered above. 

Let us now pass to the case of a slightly deformed uniformly heated sphere and an arbi- 

trary z, . As previously, we assume that expansions in a small parameter are admissible, 
that all derived systems of equations have unique solutions, and that all functions have 
the necessary properties of smoothness. 
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Let the relative deformation F of the sphere be small. We seek the solution in a sphe- 
rical system of coordinates of the form 

T = T, (r) + ET1 (r, 8, q) + . . . . V ~1 evr (r, 9. v) + ezVz (r. 8, (p) + . . . 

n z no (r) f En, (r, 8, v) $ . . . . p = 2 EF, f tL’b’, -i- . . . 

where T, and II, are solutions of the problem of uniformly heated sphere (e = 0) in 
a gas at rest, T, is the solution of the Laplace equation (1.9), thermal stresses are bal- 
anced by pressure, and any force is absent [l, 21. The aim in this case is to show that 

not for all forms of deformation v1 # 0. 

Let us prove that v, z 0 , then and only then, when 

T, = rla-’ [T,“(O) (7) i- r-2 Y, (9, CPJI, rlo = rl (To) (5.1) 

where T,,(O) is an arbitrary function of p and Y, (0, v) is the first spherical-surface 

harmonic. We call this statement Lemma 3. 
It was shown in [ 11 that the condition of quiescence around a uniformly heated body is 

(5.2) 

In the case of simply connected bodies of finite dimensions this condition is only satis- 
fied for a sphere. It is obtained by cross differentiation of Eq. (1.5) for v s 0. It can 

obviously be satisfied also in the case of other bodies, if quantities of the order of 0 (F?) 

and higher are neglected. Then v s- 0 (e2). 
The condition of quiescence in a linear approximation by E is defined as follows: 

aT,, 8 1’11 A”-7 1 3TI al’,, a2To -7 'ki ax ~ 
, “Tv WI 821‘~ 

/i , dc,. n.rj ’ dxi h-,; dx,,. d.zj -’ q q q - 

aT,, d?‘,, $Tl <,I’,, aT, tPT<I 87’1 3To PTo --- 
axj as, ax, axi -qqaz,azi--- axj ax, m == O 

Using here the relationship zk8 / a~, = ra / ar 

T, = T, (4, q”To” + %I’ (T,‘) 2 = - (3 / r) q(lT<,’ 

introducing the notation 
T 10 ~ TOT,, ( )’ = d ( ) / dr 

and, as can be readily verified, 

t Qij (T) 

Qij (VOTI) z Ilef?ij (TI) 

we reduce (5.3) to the form 

-$ Qij (‘?I,,) + + Qij (7‘1,,) = 0 

Integrating (5.7), we obtain 

Qij (TM) E xi 
07’11, 87’11, - _ r. - = = fLj (0, cp) re3 
dXj I dx. 1 

(5.3) 

(5.4) 

(5.51 

(5.6) 

(5.7) 

(5.3) 
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where jij are arbitrary functions of S and cp. Equalities (5.8) are significant only for 
i # i (for i == i there are no conditions for I’,, ), hence (5.8) reduces to 

r x GT,, = f (0, cp) F-2 (5.9) 
or 1 87’,” 

sin i3cp - = fl(0, (p) r--2, = fz@, cp) r-2 (5.10) 
It follows from (5.10) that 

TUI = Tt0(‘) (7) + p-‘f (0, cp) (5.11) 

For vr f 0 the equation of energy for z’,, assumes the form 

ATJO = 0 (5.12) 

The first term in (5.11) belongs to the class of centrally-symmetric temperature fields 
which do not generate motion and are, consequently, of no interest. The second term 
assumes by virtue of (5.12) the form (5.1). Thus, if the perturbed temperature field is 
of the form (5. l), the linearized conditions of quiescence are satisfied and thermal 

stresses are balanced by pressure. In the opposite case a motion of velocities of the order 
of E is generated. The lemma is proved. 

The temperature field (5.1) obtains when the sphere deformation is specified by the 

first spherical harmonic, which in the linear approximation is equivalent to a shift of the 
sphere in a certain direction. 

6. On the force acting on a deformed sphere. Let us prove that the 
force acting on a slightly deformed (E 4 1) and uniformly heated (t* .- 1) sphere is 

F < 0 (e2). 

It is necessary to prove that in the linear approximation by e we have F G Fl = 0. 

We linearize the equations of conservation and write these in the zero and first appro- 

ximations by e, omitting the subscript at vr . We obtain 

2 -_+z.$ 
2vr v. ctg 8 

(- r + 7 + --&- 2 = VT. (111 TU) (6.1) 

(r’nlTT,‘)’ = 0, ATi, = El., (In T,)’ 

+ X’ 
TO 

(To’)2 3’1 

where the prime denotes differentiation with respect to r ; pot etc. are functions of To, 
and u,., ‘se and uQ denote the related terms of the Navier-Stokes operator II(i) , which 
for P = 1 can be found in texts on hydrodynamics (see [ll]). 

Let us establish the boundary conditions for Ti. Let the shape of the body be specified 
by the expression 

r = 1 + aa (0, cp) (6.2) 

Then at the wall 
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T, (I) = T,, T, (1, 0, CP) = - a 03, CF) T,’ (1) 

Let the perturbation function be of the form 

a= 5 a,P* (cos 6) t i: Y,l, ,n@, af 
n=i P&n 

Y n, 11L = ac?mrJ,nnL (COS 0) Cos mcp + at?m7’nm (cos 0) sir1 mcp 

If the solution of the system of Eqs. (6.1) is sought in the form 

(6.3) 

(6.4) 

with boundary conditions for r = i 

(6.6) 

and zero boundary conditions for r -. ‘73, then rhe system of equations for variables with 
different subscripts are independent of each other and, consequently, the n-th deforma- 
tion gives rise to the m-th component in I’,, v and 11, (because of their unwieldiness 
these systems of equations are not reproduced here). 

Taking into consideration Lemma 1, we write the part of the expression for arbitrarily 

directed force induced by the perturbed parameters of gas, in a polar system of coordi- 
nates whose axis coincides with the direction of the force. We have 
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Owing to the orthogonality of the system of functions {sin mcp, cos mq} for m >, 1 
with respect to unity in the interval (0, 2 ~1, only components with m = 0, i. e, f,,, gn, 

h,, and t, , can contribute to F,(l) . It appears that here the equations for groups of vari- 

ables with different subscripts n are, also, independent of each other, namely 

f,,’ -t ‘r-f, - n (n + 1) r-g, = f,, (111 111,)’ (6.9) 

fTL” + 2fF’flL’ - n (II I- 1) ‘-?,L = E’f,, (In 7’0)’ 

lztLi ~7 p, [f,,” t W’f,,’ - “r-?f,, - n (n + 1) ‘Gf,, + “n (IL + 1) r-2g,,1 + 

11, == p0 [rg,” + 2 grL’ - n (r~ + 1) r-‘g, -+ 2 r-lfn] $ 

FO’ T,’ [r2 (R* i r)’ + fnl f hO-*YT, (TIJ’) ’ t,, 

Use was made here of the fact that the deformation for m = 0 is axisymmetric (conse- 

quently uID = o), and of the known relationship between Legendre polynomials P, (cos 0) 

and the first order adjoint Legendre polynomials p,,’ (cos e). 
Reverting to (6.8) we see that owing to the orthogonality only terms with subscript 

n = 1, i.e. those due to the first zonal harmonic of stress, can contribute to F,“‘. For 
n = 1 and with allowance for 

T,” = - (q”./ Q) (T,‘) 2 - (2 / ;, T,’ 

equations (6.9) with boundary conditions (6.7) and zero boundary conditions for r -+ CO 

have the solution 

with 
fl :m 0, ,Q = 0, t, =: cr-2, h, = l’Toq”-’ (T”‘) 2 t,, c = - al (qoTO’)_ 

T 1” 7 cr+ COS 0 (6.10) 

These results are evidently in accordance with Lemma 3, i. e. the temperature field 
(6.10) does not unduce motion of the gas. According to Lemma 2 deformations and ther- 
mal stresses dependent on the first zonal harmonic are balanced by pressure and the force 
acting on the body is I7* ~z 0. The latter can be verified by direct integration over the 

body and taking into account besides (6.8) the input of the zero approximation of the 
solution at the deformed surface. 

It has thus been shown that, if the deformation is such that n > 2, then v1 # 0 but 

F, = 0. If, however, n = 1, then v1 = 0, thermal stresses are balanced by pressure, 

and again F, = 0. The statement formulated above is proved. 
For a single body the results obtained here and in Sect. 3 tend to refute the existence 

of a thermal-stress force acting on a single body. 

7. Strers concentration phenomena (*) , Let us consider now similar 
phenomena produced by concentration stresses in a binary mixture of gases at n = 
con& and T = con& (hence the binary diffusion coefficient D,, = con&). We 
disregard here the Dufour effect which is absent in the case of Maxwellian molecules 
and generally results in a weak effect of concentration gradients on T . The reverse 
effect of temperature gradients on concentration fields and velocities is, obviously, even 

*) These could be called diffusion phenomena, since such stresses are defined in terms 

of the “Navier-Stokes” diffusion rates and of their derivatives and, also, by analogy to 

such concepts as diffusion slip and thermal effects of diffusion. 
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weaker. let us consider the first constituent of a mixture as the “basic” one and assume 
that the characteristic values p* = pii and p* G nm,, where pti is the viscosity 

coefficient of a pure gas consisting of molecules of mass m, of the first constituent. 

In the case of slow flows concentration stresses pi+@ are of the fundamental order 

of magnitude, if the characteristic differences of concentration are of the order of unity 
[2]. In a more general form than in [ 1, 21 this condition may be defined by 

2 py+1, y, = ;, rJ. = 2 RI (7.1) 
a a 

where summation is carried out over all constituents of the mixture and n, is the number 
of particles of the a-kind in a unit of volume. The expression for p#) was obtained in 
[12] from the equations of moments for a binary mixture of Maxwellian molecules by 
using Maxwell’s method. It conforms to the results obtained by the Chapman-Enskog 

method in the first approximation by Sonin’s polynomials in [13]. Recalling that y, i- 
y, = 1 , we write that expression thus 

(7.2) 

o = o. (Ap*)-l {M, - Ml + y 12 (Ally1 - M,yJ + (7.3) 

Y& --Y1SJ) 

II, = x - (0 / P*) (1’1, - Al,) 

x = o,y(Ap*)-l I(1 - v) (S,M, + &II/I,)-I + yS,S%l 

The quantities Q and s have the same meaning as in [S] and the coefficient Y varies 
from 0.6 (elastic spheres) to 0.775 (Maxwellian molecules). For molecules considered 
to be elastic spheres and for Maxwellian molecules the ratio s,a22/~1222 is, respectively, 

4ocr2 (crl + G~)--~ and (%, / x~~)‘,“, where a = 1,2, IS= are the diameters of spheres, 

and xaP are coefficients in formulas for intermolecular forces. 
The equations of conservation can be reduced to the form 

vv = --v.vlnp* (7.4) 

t2y1 = [(Al, - hi,) / p*l (VYI)” + (2~>-~ (k-.Vyd (7.5) 

(yl + y,LW, / ill,) (v.V) v -/- VII, = 11(l) + Y, (Vyl)” T,7y1 + (7.6) 

(2y)-1 (0’ - $) (v .VYl) VY, 
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EC = P + xc (Vu,)” + 1(3$-QJ - 2/3Pl (V’VYl) 
x, = l/@’ -t ‘/e li, + 2 (3p*)+ (M, - M,), A’ = dA / hi, 

Y, = 1/$$0” - ‘/2q,” + (0’ - q> CM, - M,) / p* 

If variables 

Q, I; ]n R, K = y, + ICI, / (fit, - i1f2) = p* / (fifr 

are substituted for yl, Eqs. (7.4) and (7.5) assume the form 

vv = - v.vf&. C/“Q, = (a&’ (v*~s&j 

In addition we obtain the expression _ 

&I,) 

(7.7) 

(7.8) 

which is similar to (1.1). 
Boundary conditions for v are the same as in Sect. 1, except that along s instead of 

the thermal creep rate we have here the diffusion slip rate v, - &J, / 3~~ . Boundary 

conditions for concentration can be of various kinds ; in what follows we select the sim- 
plest, namely that along the body surface concentrations are constant, i.e. yru, = const. 

A lemma equivalent to Lemma I is valid in this case, In fact, along S instead of 

(1.9) we have AQ, = 0, hence the first term in formula (7.8) does not contribute to 
force F(C) acting on the body and 

F’“’ = - J-x_ z 3 s 
(Vy,)2 ( n.e,)dS (7.9) 

The formula for M,@) is derived in a similar manner. Let us list the remaining pro- 
perties which are similar to those obtained above. For y,, = const any diffusion slip 
is absent and the motion of gas is induced by concentration stresses (concentration-stress 

convection), If vy, < 1, its rates are u, - yr;, (vyr)” and PC - -XC (vyr)“. 
For equal boundary conditions the ratios are u,.uT = Y,/ YT and p,..p~ = Xc/ 
XT (*). Results obtained in Sects. 2-6 apply quantitatively to gas mixtures, except 
that the coefficients in formulas for forces are different. Instead of (3.3) we have 

F, = k, ’ W (h - hJ12 (n-e,) dS, 
s 

k, = + (63‘ - 9) (7.10) 

Because of this it is necessary to analyze the coefficients X,, Y, and k,. Let us 
carry out this analysis for the limit cases usually considered in investigations of thermal 

diffusion (141. We assume that m,, n, pll and y1 are fixed, and retain in expansions 
such number of series coefficients which would result in “nonvanishing” formulas for Y,. 
In assigning signs we have to bear in mind the previously indicated range of Y. 

a) Isotopic molecules of similar mass and equal cross sections, i.e. 

M, = rj2 + a,, ns, = l,f2 - &,, s, = (2M2)-‘i’L, s, = (2Mp (7.11) 
Expanding these expressions in terms of &, << ‘f and using the notation 

*) These properties were established in [12]. where in the formula for Fk on p. 117 
there is an error: the second term must be preceded by a minus sign. 
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us = a,,, / (1 + y), we obtain 

0) = 40gFg [y - 2 + l/$0 (y, - yz) (4 -i 15y - 13y2) + 

qj2yIy, (26+25~ + My2 - 103~~) + corlst eo2 + 0 (qj3)l 

$ = 20, (1 + 1’) Eo2 [5y2 - 9y + 16 - E,, (yl - yz) x 
(48 + 75y- 68y2 + 25~~) + 0 (Eo2)] 

X - 5/#iJE02 (y” - lOy2 + 13y - ‘J/j) < 0 c- 
Y e = 2~0,~~~ (5y4 + 55y3 - 165~~ + 133~ - 36) < 0 

k, = w0~02 ( -5y3 - 22y2 + 23y - 8) < 0 

b) Isobaric molecules of the same mass and similar cross sections, i. e. 

fi[, = AI, = 1/2, L!?, = 1 + &it s, = 1 + E2 

For e, < 1 and q_ < 1 we have 

0 = 4C0,y (1 + y)-’ (YZE$ - YIE1)E, 9 = 20,y (E1 f Eq) f:’ 

E = 1 - EIy," - E,y,” - 2y (1 + r)-’ (Em f Ed) y,y, -i_ o (E2) 

s, z 
OoT(T - ~)(EI + Ez) Y, z 20~~ (El +- &a) :-I (1 -1 r) 

a :; 

{(q + Ed) 157 -t- rz +;I (7 - 67 $j’i F? (f $- 47 + 7)]) 

k, 13 --woY (3 +- Y) (1 + Y>-’ (EI + E2) 

The signs of coefficients are determined by the signs of .a1 and a2. If ei f a.~ > 0, 

then X, < 0, k, < 0, and Y, > 0 with the additional condition E, < 0. 

c) The masses of molecules vary considerably but their “diameters” are the same, 

i. e. 
M, = 1 - E3, n/l, = ES, s, Z (~Es)-~‘, s, = 2-:’ 

For e, (( 1 we obtain 

0 =: -w,l/ 2 (y,d)-1, qI z w,(y + V/2) y,“6-’ 

X c ~ WI IT + (is r/-+ -r) rll 
By1”6” >OT Y,-$g IT+ r/~-t(r-Vm>~ 

k c= -1/20” (y,6)-2 [y - (1/S - y) ql < 0 (6 = 1 + ‘1, q = (r/Z - 1) Y,) 

We recall that the coefficients which define thermal-stress convection have fixed 

signs (at least for l-t = T”) , namely : XT > 0, YT < 0 and kT > 0. The signs 

of the similar coefficients X,, Y, and k, in the case of gas mixtures depend, generally 
speaking, on the ratios of masses and collision cross sections of molecules. The most 
“stable” is the sign of k, which in cases considered above is k, < 0, hence the analogy 

with electrostatics is valid but with the “opposite sign”. 
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CONVECTION IN CHEMICALLY ACTIVE MEDIA 
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We consider the stability of a horizontal layer of a dissociating liquid or gas 
subject to a given vertical temperature gradient. We determine conditions for 
the appearance of stationary and oscillating convection corresponding to an 
arbitrary time for the establishment of local chemical eq~librium, 

Two problems concerning the appearance of convection in a layer of dissoci- 
ating fluid with an arbitrary dissociation time were investigated in [l]. In the 
first of these problems it was assumed erroneously that unlike the temperature 
the degree of dissociation does not depend on the height, although there is 


